Autor: |
Minrui Liu, Xing-e Qi, Jiangyuan Han, Hongyuhang Ni, Shuqin Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Ecotoxicology and Environmental Safety, Vol 256, Iss , Pp 114858- (2023) |
Druh dokumentu: |
article |
ISSN: |
0147-6513 |
DOI: |
10.1016/j.ecoenv.2023.114858 |
Popis: |
Cadmium (Cd) is a hazardous metal that can accumulate in aquatic organisms and endanger human health via the food chain. In this study, genetic engineering was used to display a peptide with Cd-binding potential on the surface of Escherichia coli cells. This whole-cell adsorbent exhibited high affinity for Cd ions (Cd2+) in the solution. The Cd2+ adsorption capacity of the whole-cell adsorbent was three-fold that of the control cells in a 20 μM Cd2+ solution, and 97.2% ± 2.38% of the Cd2+ was removed. The whole-cell adsorbent was fed to shrimp (Neocaridina denticulata), and the surface-engineered E. coli successfully colonized the shrimp intestine, which showed significantly less Cd accumulation than the group not fed surface-engineered E. coli. The whole-cell adsorbent evidently protected shrimp from the toxicity of Cd2+ by adsorbing it. Moreover, the whole-cell adsorbent mitigated the changes in microbial community structure in the shrimp gut caused by the exposure of Cd2+. These findings suggest that this strategy is effective for controlling the contamination of Cd2+ in shrimp. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|