Autor: |
Kunyou Zhou, Zhen Deng, Jiliang Kan, Linming Dou, Jiazhuo Li, Minke Duan, Peng Kong |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 17, p 7737 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14177737 |
Popis: |
Determining the advanced mining influence range of an underground working face is crucial for preventing dynamic disasters, such as coal bursts and gas outbursts. In this study, the occurrence of advanced seismicity before the working face as well as its correlation with the acoustic emission (AE) activity of coal and rocks under axial loading was analyzed. Based on the results, a novel statistical method to determine the advanced mining influence range based on advanced seismicity data was proposed and then validated with a case study. The results show that advanced seismicity is caused by the combined effects of static and dynamic stresses at the working face. This seismicity can be used to assess the mining influence degree of the working face on the advanced coal and rock mass, and determine the advanced mining influence range. Using the novel statistical method, the normalized curves for the total number and total energy of the advanced mining-induced seismicity can be plotted. Then, the advanced mining influence range can be determined using thresholds. The thresholds can be established based on the AE activities observed in coal and rock samples under axial static loading. In the case study in this research, the thresholds for the total seismic number and total seismic energy are 0.076 and 0.052, respectively. The corresponding advanced mining influence ranges are 275 m and 245 m, respectively. Field monitoring confirms an advanced mining influence range of 255 m, which validates the results obtained using the novel statistical method. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|