Autor: |
Musyyab Yousufi, Robertas Damaševičius, Rytis Maskeliūnas |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Brain Sciences, Vol 14, Iss 10, p 1018 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3425 |
DOI: |
10.3390/brainsci14101018 |
Popis: |
Background/Objectives: This study investigates the classification of Major Depressive Disorder (MDD) using electroencephalography (EEG) Short-Time Fourier-Transform (STFT) spectrograms and audio Mel-spectrogram data of 52 subjects. The objective is to develop a multimodal classification model that integrates audio and EEG data to accurately identify depressive tendencies. Methods: We utilized the Multimodal open dataset for Mental Disorder Analysis (MODMA) and trained a pre-trained Densenet121 model using transfer learning. Features from both the EEG and audio modalities were extracted and concatenated before being passed through the final classification layer. Additionally, an ablation study was conducted on both datasets separately. Results: The proposed multimodal classification model demonstrated superior performance compared to existing methods, achieving an Accuracy of 97.53%, Precision of 98.20%, F1 Score of 97.76%, and Recall of 97.32%. A confusion matrix was also used to evaluate the model’s effectiveness. Conclusions: The paper presents a robust multimodal classification approach that outperforms state-of-the-art methods with potential application in clinical diagnostics for depression assessment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|