3D-Printed Polyamide 12/Styrene–Acrylic Copolymer–Boron Nitride (PA12/SA–BN) Composite with Macro and Micro Double Anisotropic Thermally Conductive Structures

Autor: Minhang Chen, Xiaojie Chen, Junle Zhang, Bingfeng Xue, Shangyu Zhai, Haibo She, Yuancheng Zhang, Zhe Cui, Peng Fu, Xinchang Pang, Minying Liu, Xiaomeng Zhang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Polymers, Vol 15, Iss 13, p 2780 (2023)
Druh dokumentu: article
ISSN: 2073-4360
DOI: 10.3390/polym15132780
Popis: Anisotropic thermally conductive composites are very critical for precise thermal management of electronic devices. In this work, in order to prepare a composite with significant anisotropic thermal conductivity, polyamide 12/styrene–acrylic copolymer–boron nitride (PA12/SA–BN) composites with macro and micro double anisotropic structures were fabricated successfully using 3D printing and micro-shear methods. The morphologies and thermally conductive properties of composites were systematically characterized via SEM, XRD, and the laser flash method. Experimental results indicate that the through-plane thermal conductivity of the composite is 4.2 W/(m·K) with only 21.4 wt% BN, which is five times higher than that of the composite with randomly oriented BN. Simulation results show that the macro-anisotropic structure of the composite (caused by the selective distribution of BN) as well as the micro-anisotropic structure (caused by the orientation structure of BN) both play critical roles in spreading heat along the specified direction. Therefore, as-obtained composites with double anisotropic structures possess great potential for the application inefficient and controllable thermal management in various fields.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje