Ground state solutions for a kind of superlinear elliptic equations with variable exponent

Autor: Bosheng Xiao, Qiongfen Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Boundary Value Problems, Vol 2024, Iss 1, Pp 1-23 (2024)
Druh dokumentu: article
ISSN: 1687-2770
DOI: 10.1186/s13661-023-01809-z
Popis: Abstract In this paper, we focus on the existence of ground state solutions for the p ( x ) $p(x)$ -Laplacian equation { − Δ p ( x ) u + λ | u | p ( x ) − 2 u = f ( x , u ) + h ( x ) in Ω , u = 0 , on ∂ Ω . $$ \textstyle\begin{cases} -\Delta _{p(x)}u+\lambda \vert u \vert ^{p(x)-2}u=f(x,u)+h(x) \quad \text{in } \Omega , \\ u=0,\quad \text{on }\partial \Omega . \end{cases} $$ Using the constraint variational method, quantitative deformation lemma, and strong maximum principle, we proved that the above problem admits three ground state solutions, especially speaking, one solution is sign-changing, one is positive, and one is negative. Our results improve on those existing in the literature.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje