Prolonged Omicron-specific B cell maturation alleviates immune imprinting induced by SARS-CoV-2 inactivated vaccine
Autor: | Ayijiang Yisimayi, Weiliang Song, Jing Wang, Fanchong Jian, Yuanling Yu, Xiaosu Chen, Yanli Xu, Ran An, Yao Wang, Haiyan Sun, Peng Wang, Lingling Yu, Fei Shao, Ronghua Jin, Zhongyang Shen, Youchun Wang, Yunlong Cao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Emerging Microbes and Infections, Vol 13, Iss 1 (2024) |
Druh dokumentu: | article |
ISSN: | 22221751 2222-1751 |
DOI: | 10.1080/22221751.2024.2412623 |
Popis: | SARS-CoV-2 ancestral strain-induced immune imprinting poses great challenges to updating vaccines for new variants. Studies showed that repeated Omicron exposures could override immune imprinting induced by inactivated vaccines but not mRNA vaccines, a disparity yet to be understood. Here, we analyzed the immune imprinting alleviation in inactivated vaccine (CoronaVac) cohorts after a long-term period following breakthrough infections (BTI). We observed in CoronaVac-vaccinated individuals who experienced BA.5/BF.7 BTI, the proportion of Omicron-specific memory B cells (MBCs) substantially increased after an extended period post-Omicron BTI, with their antibodies displaying enhanced somatic hypermutation and neutralizing potency. Consequently, the neutralizing antibody epitope distribution encoded by MBCs post-BA.5/BF.7 BTI after prolonged maturation closely mirrors that in BA.5/BF.7-infected unvaccinated individuals. Together, these results indicate the activation and expansion of Omicron-specific naïve B cells generated by first-time Omicron exposure helped to alleviate CoronaVac-induced immune imprinting, and the absence of this process should have caused the persistent immune imprinting seen in mRNA vaccine recipients. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |