Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces

Autor: K. N. V. V. Vara Prasad, G. V. R. Babu
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: Fixed Point Theory and Applications, Vol 2006 (2007)
Druh dokumentu: article
ISSN: 1687-1820
1687-1812
DOI: 10.1155/FPTA/2006/35704
Popis: Let E be an arbitrary real Banach space and K a nonempty, closed, convex (not necessarily bounded) subset of E. If T is a member of the class of Lipschitz, strongly pseudocontractive maps with Lipschitz constant L≥1, then it is shown that to each Mann iteration there is a Krasnosleskij iteration which converges faster than the Mann iteration. It is also shown that the Mann iteration converges faster than the Ishikawa iteration to the fixed point of T.
Databáze: Directory of Open Access Journals