Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces
Autor: | K. N. V. V. Vara Prasad, G. V. R. Babu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Fixed Point Theory and Applications, Vol 2006 (2007) |
Druh dokumentu: | article |
ISSN: | 1687-1820 1687-1812 |
DOI: | 10.1155/FPTA/2006/35704 |
Popis: | Let E be an arbitrary real Banach space and K a nonempty, closed, convex (not necessarily bounded) subset of E. If T is a member of the class of Lipschitz, strongly pseudocontractive maps with Lipschitz constant L≥1, then it is shown that to each Mann iteration there is a Krasnosleskij iteration which converges faster than the Mann iteration. It is also shown that the Mann iteration converges faster than the Ishikawa iteration to the fixed point of T. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |