Popis: |
Purpose: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrine disorder affecting women of reproductive age. The pathogenesis of PCOS is influenced by factors such as race, genetics, environment, hyperandrogenemia, hyperinsulinemia, and obesity. However, the molecular mechanisms linking RNA modification and PCOS remain underexplored. This study aims to investigate the potential genetic and molecular pathways connecting RNA modification with PCOS through bioinformatics analyses. Methods: The GSE34526, GSE5850, and GSE98421 datasets were obtained from the National Center for Biotechnology Information Gene Expression Omnibus database. We identified intersecting differentially expressed genes (DEGs) and RNA modification-related genes within the GSE34526 dataset and visualized the overlaps using a Venn diagram. Subsequent analyses included Gene Ontology (GO), pathway enrichment (Kyoto Encyclopedia of Genes and Genomes), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analysis. Additionally, we constructed a protein-protein interaction network as well as mRNA-miRNA, mRNA-RNA binding protein, and mRNA-transcription factor (TF) regulatory networks. The expression and receiver operating characteristic curves of hub genes were also identified. Results: The expression of several RNA modification-related DEGs (RMRDEGs) (ALYREF, NUDT1, AGO2, TET2, YTHDF2, and TRMT61B) showed significant differences in PCOS patients. GSEA and GSVA indicated that RMRDEGs were enriched in the hedgehog, MAPK, JAK STAT, and Notch pathways. Key transcription factors, including SP7, KLF8, HCFC1, IRF1, and MLLT1, were identified in the TF regulatory networks. Conclusions: These findings suggest that there are gene and miRNA profile alterations exist in PCOS patients and highlight immune-related differences. This knowledge could pave the way for new research directions in the diagnosis and treatment of PCOS. |