Non-additive Lie centralizer of strictly upper triangular matrices
Autor: | Driss Aiat Hadj Ahmed |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Extracta Mathematicae, Vol 34, Iss 1 (2019) |
Druh dokumentu: | article |
ISSN: | 0213-8743 2605-5686 |
Popis: | Let F be a field of zero characteristic, let Nn (F ) denote the algebra of n × n strictly upper triangular matrices with entries in F , and let f : Nn (F ) → Nn (F ) be a non-additive Lie centralizer of Nn (F ) , that is, a map satisfying that f ([X, Y ]) = [f (X), Y ] for all X, Y ∈ Nn (F ) . We prove that f (X) = λX + η (X) where λ ∈ F and η is a map from Nn (F ) into its center Z (Nn (F ) ) satisfying that η([X, Y ]) = 0 for every X, Y in Nn (F ) . |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |