An Image Fusion Algorithm Based on Improved RGF and Visual Saliency Map

Autor: Yang Li, Haitao Yang, Yuge Gao
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Emergency Medicine International, Vol 2022 (2022)
Druh dokumentu: article
ISSN: 2090-2859
DOI: 10.1155/2022/1693531
Popis: To solve the artifact problem in fused images and the lack of enough generalization under different scenarios of existing fusion algorithms, the paper proposes an image fusion algorithm based on improved RGF and visual saliency map to realize fusion for infrared and visible light images and a multimode medical image. Firstly, the paper uses RGF (rolling guidance filter) and Gaussian filter to decompose the image into the base layer, interlayer, and detail layer by a different scale. Secondly, the paper obtains a visual weight map by the calculation of the source image and uses the guided filter to better guide the base layer fusion. Then, it realizes the interlayer fusion through maximum local variance and realizes the detail layer fusion through the maximum absolute value of the pixel. Finally, it obtains the fused image through weight fusion. The experiment demonstrates that the proposed method shows better comprehensive performance and obtains better results in fusion for infrared and visible light images and medical images compared to the contrast method.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje