Autor: |
Abdelatif Boutiara, Maamar Benbachir, Jehad Alzabut, Mohammad Esmael Samei |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Fractal and Fractional, Vol 5, Iss 4, p 194 (2021) |
Druh dokumentu: |
article |
ISSN: |
2504-3110 |
DOI: |
10.3390/fractalfract5040194 |
Popis: |
The objective of this paper is to study the existence of extremal solutions for nonlinear boundary value problems of fractional differential equations involving the ψ−Caputo derivative CDa+σ;ψϱ(t)=V(t,ϱ(t)) under integral boundary conditions ϱ(a)=λIν;ψϱ(η)+δ. Our main results are obtained by applying the monotone iterative technique combined with the method of upper and lower solutions. Further, we consider three cases for ψ*(t) as t, Caputo, 2t, t, and Katugampola (for ρ=0.5) derivatives and examine the validity of the acquired outcomes with the help of two different particular examples. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|