Forecasting Air Quality in Tripoli: An Evaluation of Deep Learning Models for Hourly PM2.5 Surface Mass Concentrations

Autor: Marwa Winis Misbah Esager, Kamil Demirberk Ünlü
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Atmosphere, Vol 14, Iss 3, p 478 (2023)
Druh dokumentu: article
ISSN: 2073-4433
DOI: 10.3390/atmos14030478
Popis: In this article, we aimed to study the forecasting of hourly PM2.5 surface mass concentrations in the city of Tripoli, Libya. We employed three state-of-the-art deep learning models, namely long short-term memory, gated recurrent unit, and convolutional neural networks, to forecast PM2.5 levels using univariate time series methodology. Our results revealed that the convolutional neural networks model performed the best, with a coefficient of variation of 99% and a mean absolute percentage error of 0.04. These findings provide valuable insights into the use of deep learning models for forecasting PM2.5 and can inform decision-making regarding air quality management in the city of Tripoli.
Databáze: Directory of Open Access Journals