Characterization of irreducible polynomials over a special principal ideal ring

Autor: Brahim Boudine
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematica Bohemica, Vol 148, Iss 4, Pp 501-506 (2023)
Druh dokumentu: article
ISSN: 0862-7959
2464-7136
DOI: 10.21136/MB.2022.0187-21
Popis: A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$.
Databáze: Directory of Open Access Journals