Characterization of irreducible polynomials over a special principal ideal ring
Autor: | Brahim Boudine |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematica Bohemica, Vol 148, Iss 4, Pp 501-506 (2023) |
Druh dokumentu: | article |
ISSN: | 0862-7959 2464-7136 |
DOI: | 10.21136/MB.2022.0187-21 |
Popis: | A commutative ring $R$ with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length $e$ is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length $2$. Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length $e$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |