Computational advances of tumor marker selection and sample classification in cancer proteomics

Autor: Jing Tang, Yunxia Wang, Yongchao Luo, Jianbo Fu, Yang Zhang, Yi Li, Ziyu Xiao, Yan Lou, Yunqing Qiu, Feng Zhu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Computational and Structural Biotechnology Journal, Vol 18, Iss , Pp 2012-2025 (2020)
Druh dokumentu: article
ISSN: 2001-0370
DOI: 10.1016/j.csbj.2020.07.009
Popis: Cancer proteomics has become a powerful technique for characterizing the protein markers driving transformation of malignancy, tracing proteome variation triggered by therapeutics, and discovering the novel targets and drugs for the treatment of oncologic diseases. To facilitate cancer diagnosis/prognosis and accelerate drug target discovery, a variety of methods for tumor marker identification and sample classification have been developed and successfully applied to cancer proteomic studies. This review article describes the most recent advances in those various approaches together with their current applications in cancer-related studies. Firstly, a number of popular feature selection methods are overviewed with objective evaluation on their advantages and disadvantages. Secondly, these methods are grouped into three major classes based on their underlying algorithms. Finally, a variety of sample separation algorithms are discussed. This review provides a comprehensive overview of the advances on tumor maker identification and patients/samples/tissues separations, which could be guidance to the researches in cancer proteomics.
Databáze: Directory of Open Access Journals