Popis: |
In this article, we consider the following quasilinear Schrödinger system: −εΔu+u+k2ε[Δ∣u∣2]u=2αα+β∣u∣α−2u∣v∣β,x∈RN,−εΔv+v+k2ε[Δ∣v∣2]v=2βα+β∣u∣α∣v∣β−2v,x∈RN,\left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{\alpha +\beta }{| u| }^{\alpha -2}u{| v| }^{\beta },& x\in {{\mathbb{R}}}^{N},\\ -\varepsilon \Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{\alpha +\beta }{| u| }^{\alpha }{| v| }^{\beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right. where ε>0,k |