Autor: |
Liang Ran, Yaling Mao, Tiejiang Yuan, Guofeng Li |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Energies, Vol 15, Iss 22, p 8764 (2022) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en15228764 |
Popis: |
Hydrogen energy leads us in an important direction in the development of clean energy, and the comprehensive utilization of hydrogen energy is crucial for the low-carbon transformation of the power sector. In this paper, the demand for hydrogen energy in various fields is predicted based on the support vector regression algorithm, which can be converted into an equivalent electrical load when it is all produced from water electrolysis. Then, the investment costs of power generators and hydrogen energy equipment are forecast considering uncertainty. Furthermore, a planning model is established with the forecast data, initial installed capacity and targets for carbon emission reduction as inputs, and the installed capacity as well as share of various power supply and annual carbon emissions as outputs. Taking Gansu Province of China as an example, the changes of power supply structure and carbon emissions under different scenarios are analysed. It can be found that hydrogen production through water electrolysis powered by renewable energy can reduce carbon emissions but will increase the demand for renewable energy generators. Appropriate planning of hydrogen storage can reduce the overall investment cost and promote a low carbon transition of the power system. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|