Neural-network quantum states for ultra-cold Fermi gases

Autor: Jane Kim, Gabriel Pescia, Bryce Fore, Jannes Nys, Giuseppe Carleo, Stefano Gandolfi, Morten Hjorth-Jensen, Alessandro Lovato
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Communications Physics, Vol 7, Iss 1, Pp 1-12 (2024)
Druh dokumentu: article
ISSN: 2399-3650
DOI: 10.1038/s42005-024-01613-w
Popis: Abstract Ultra-cold Fermi gases exhibit a rich array of quantum mechanical properties, including the transition from a fermionic superfluid Bardeen-Cooper-Schrieffer (BCS) state to a bosonic superfluid Bose-Einstein condensate (BEC). While these properties can be precisely probed experimentally, accurately describing them poses significant theoretical challenges due to strong pairing correlations and the non-perturbative nature of particle interactions. In this work, we introduce a Pfaffian-Jastrow neural-network quantum state featuring a message-passing architecture to efficiently capture pairing and backflow correlations. We benchmark our approach on existing Slater-Jastrow frameworks and state-of-the-art diffusion Monte Carlo methods, demonstrating a performance advantage and the scalability of our scheme. We show that transfer learning stabilizes the training process in the presence of strong, short-ranged interactions, and allows for an effective exploration of the BCS-BEC crossover region. Our findings highlight the potential of neural-network quantum states as a promising strategy for investigating ultra-cold Fermi gases.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje