DSSA+: Distributed Collision Avoidance Algorithm in an Environment where Both Course and Speed Changes are Allowed
Autor: | Katsutoshi Hirayama, Koki Miyake, Tomohiro Shiota, Tenda Okimoto |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, Vol 13, Iss 1, Pp 117-124 (2019) |
Druh dokumentu: | article |
ISSN: | 2083-6473 2083-6481 |
DOI: | 10.12716/1001.13.01.11 |
Popis: | Distributed Stochastic Search Algorithm (DSSA) is one of state-of-the-art distributed algorithms for the ship collision avoidance problem. In DSSA, whenever a ship encounters with any number of other ships (neighboring ships), she will select her course with a minimum cost after coordinating their decisions with her neighboring ships. The original DSSA assumes that ships can change only their courses while keeping their speed considering kinematic properties of ships in general. However, considering future possibilities to address more complex situations that may cause ship collision or to deal with collision of other vehicles (such as mobile robots or drones), the options of speed changes are necessary for DSSA to make itself more flexible and extensive. In this paper, we present DSSA+, as a generalization of DSSA, in which speed change are naturally incorporated as decision variables in the original DSSA. Experimental evaluations are provided to show how powerful this generalization is. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |