Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha

Autor: Xinhui Peng, Qiang Yue, Qianqi Chi, Yanwei Liu, Tian Tian, Shicheng Dai, Aihua Yu, Shaodong Wang, Huan Wang, Xiaohong Tong, Lianzhou Jiang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Foods, Vol 12, Iss 4, p 884 (2023)
Druh dokumentu: article
ISSN: 2304-8158
DOI: 10.3390/foods12040884
Popis: Plant-based milk is considered a healthy and environmentally sustainable option. However, due to the low protein content of most plant-based milk and the difficulty of gaining flavor acceptance by consumers, its production scale is usually limited. Soy milk is a kind of food with comprehensive nutrition and high protein content. In addition, kombucha is naturally fermented by acetic acid bacteria (AAB), yeast, lactic acid bacteria (LAB), and other microorganisms, and the microorganisms in its system can improve the flavor characteristics of food. In the present study, LAB (commercially purchased) and kombucha were used as fermenting agents for soybean, which was used as a raw material to produce soy milk. A variety of characterization methods were used to study the relationship between the microbial composition and flavor regularity of soy milk produced with different proportions of fermenting agents and different fermentation times. In soy milk produced at 32 °C with a mass ratio of LAB to kombucha of 1:1 and a fermentation time of 42 h, the concentrations of LAB, yeast, and acetic acid bacteria in the milk were optimal at 7.48, 6.68, and 6.83 log CFU/mL, respectively. In fermented soy milk produced with kombucha and LAB, the dominant bacterial genera were Lactobacillus (41.58%) and Acetobacter (42.39%), while the dominant fungal genera were Zygosaccharomyces (38.89%) and Saccharomyces (35.86%). After 42 h, the content of hexanol in the fermentation system of kombucha and LAB decreased from 30.16% to 8.74%, while flavor substances such as 2,5-dimethylbenzaldehyde and linalool were produced. Soy milk fermented with kombucha offers the opportunity to explore the mechanisms associated with flavor formation in multi-strain co-fermentation systems and to develop commercial plant-based fermentation products.
Databáze: Directory of Open Access Journals