Popis: |
Understanding the corrosion risk of a pipeline is vital for maintaining health, safety and the environment. This study implemented a data-driven machine learning approach that relied on Principal Component Analysis (PCA), Particle Swarm Optimization (PSO), Feed-Forward Artificial Neural Network (FFANN), Gradient Boosting Machine (GBM), Random Forest (RF) and Deep Neural Network (DNN) to estimate the corrosion defect depth growth of aged pipelines. By modifying the hyperparameters of the FFANN algorithm with PSO and using PCA to transform the operating variables of the pipelines, different Machine Learning (ML) models were developed and tested for the X52 grade of pipeline. A comparative analysis of the computational accuracy of the corrosion defect growth was estimated for the PCA transformed and non-transformed parametric values of the training data to know the influence of the PCA transformation on the accuracy of the models. The result of the analysis showed that the ML modelling with PCA transformed data has an accuracy that is 3.52 to 5.32 times better than those carried out without PCA transformation. Again, the PCA transformed GBM model was found to have the best modeling accuracy amongst the tested algorithms; hence, it was used for computing the future corrosion defect depth growth of the pipelines. This helped to compute the corrosion risks using the failure probabilities at different lifecycle phases of the asset. The excerpts from the results of this study indicate that my technique is vital for the prognostic health monitoring of pipelines because it will provide information for maintenance and inspection planning. |