Autor: |
Shilpa Prabhakar, Roberta L. Beauchamp, Pike See Cheah, Akiko Yoshinaga, Edwina Abou Haidar, Sevda Lule, Gayathri Mani, Katia Maalouf, Anat Stemmer-Rachamimov, David H. Jung, D. Bradley Welling, Marco Giovannini, Scott R. Plotkin, Casey A. Maguire, Vijaya Ramesh, Xandra O. Breakefield |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Methods & Clinical Development, Vol 26, Iss , Pp 169-180 (2022) |
Druh dokumentu: |
article |
ISSN: |
2329-0501 |
DOI: |
10.1016/j.omtm.2022.06.012 |
Popis: |
Loss of function of the neurofibromatosis type 2 (NF2) tumor suppressor gene leads to the formation of schwannomas, meningiomas, and ependymomas, comprising ∼50% of all sporadic cases of primary nervous system tumors. NF2 syndrome is an autosomal dominant condition, with bi-allelic inactivation of germline and somatic alleles resulting in loss of function of the encoded protein merlin and activation of mammalian target of rapamycin (mTOR) pathway signaling in NF2-deficient cells. Here we describe a gene replacement approach through direct intratumoral injection of an adeno-associated virus vector expressing merlin in a novel human schwannoma model in nude mice. In culture, the introduction of an AAV1 vector encoding merlin into CRISPR-modified human NF2-null arachnoidal cells (ACs) or Schwann cells (SCs) was associated with decreased size and mTORC1 pathway activation consistent with restored merlin activity. In vivo, a single injection of AAV1-merlin directly into human NF2-null SC-derived tumors growing in the sciatic nerve of nude mice led to regression of tumors over a 10-week period, associated with a decrease in dividing cells and an increase in apoptosis, in comparison with vehicle. These studies establish that merlin re-expression via gene replacement in NF2-null schwannomas is sufficient to cause tumor regression, thereby potentially providing an effective treatment for NF2. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|