Autor: |
Analia Natali Arias, Jhonny Villarroel-Rocha, Karim Sapag, María Fernanda Mori, Gabriel Angel Planes, Victoria Flexer, Alvaro Yamil Tesio |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Carbon Trends, Vol 5, Iss , Pp 100110- (2021) |
Druh dokumentu: |
article |
ISSN: |
2667-0569 |
DOI: |
10.1016/j.cartre.2021.100110 |
Popis: |
A series of carbon electrodes was synthesized via a modification of the polymerization-condensation reaction, where a 4:1 mass excess of melamine was added in basic media to the resorcinol/formaldehyde classical mixture. Melamine, together with variations of the pyrolysis temperature play a key role to define the chemical and textural properties of these carbons. A high nitrogen content, ranging from 23.2 to 11.3 % was determined. A low degree of crystallinity and disordered internal structure were assessed, while a hierarchical porous structure was stablished for all samples, including an important ultramicroporosity, with pore sizes below 0.7 nm. All electrodes showed a predominant double layer capacitive behaviour in aqueous H2SO4, while a small pseudocapacitive contribution was also evidenced for the three carbons pyrolysed at higher temperatures. These three electrodes show the highest specific capacitance (maximum of 153.6 F g−1), and outstanding cycling over 10,000 cycles. A comprehensive analysis correlating morphological and surface properties and the electrochemical behaviour was carried out. The best performing carbon was selected to construct a symmetrical device for which a specific capacitance of 103 F g−1 was determined, reaching energy and power density values of 1.4 Wh Kg−1 and 111.7 W Kg−1, respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|