A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN

Autor: Asefeh Asemi, Adeleh Asemi, Andrea Ko
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Big Data, Vol 11, Iss 1, Pp 1-16 (2024)
Druh dokumentu: article
ISSN: 2196-1115
DOI: 10.1186/s40537-024-00965-y
Popis: Abstract This article presents an investment recommender system based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) and pre-trained weights from a Multimodal Neural Network (MNN). The model is designed to support the investment process for the customers and takes into consideration seven factors to implement the proposed investment system model through the customer or potential investor data set. The system takes input from a web-based questionnaire that collects data on investors' preferences and investment goals. The data is then preprocessed and clustered using ETL tools, JMP, MATLAB, and Python. The ANFIS-based recommender system is designed with three inputs and one output and trained using a hybrid approach over three epochs with 188 data pairs and 18 fuzzy rules. The system's performance is evaluated using metrics such as RMSE, accuracy, precision, recall, and F1-score. The system is also designed to incorporate expert feedback and opinions from investors to customize and improve investment recommendations. The article concludes that the proposed ANFIS-based investment recommender system is effective and accurate in generating investment recommendations that meet investors' preferences and goals. Graphical abstract
Databáze: Directory of Open Access Journals