Autor: |
Luai Al-Labadi, Mohammed Hamlili, Anna Ly |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Axioms, Vol 12, Iss 9, p 887 (2023) |
Druh dokumentu: |
article |
ISSN: |
2075-1680 |
DOI: |
10.3390/axioms12090887 |
Popis: |
Entropy and extropy are emerging concepts in machine learning and computer science. Within the past decade, statisticians have created estimators for these measures. However, associated variability metrics, specifically varentropy and varextropy, have received comparably less attention. This paper presents a novel methodology for computing varentropy and varextropy, drawing inspiration from Bayesian nonparametric methods. We implement this approach using a computational algorithm in R and demonstrate its effectiveness across various examples. Furthermore, these new estimators are applied to test uniformity in data. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|