Autor: |
Adaly Garcia, Christina Dhoj, Samuel Groysman, Kinsley Wang, Stellina Ao, Aimee Anguiano, Tony Tran, Dianlu Jiang, Yixian Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors and Actuators Reports, Vol 8, Iss , Pp 100218- (2024) |
Druh dokumentu: |
article |
ISSN: |
2666-0539 |
DOI: |
10.1016/j.snr.2024.100218 |
Popis: |
Hydrogen peroxide (H2O2) sensing has been widely investigated using various electrochemical methods, yet the challenge of finding an imaging technique capable of real-time, spatially resolved detection remains. Addressing this, we introduce a Prussian blue (PB) nanofilm-sensitized plasmonic electrochemical microscopy (PEM) technique that successfully visualizes the localized delivery of H2O2. The PB nanofilm was carefully characterized, and its sensing capability towards H2O2 was demonstrated in amperometric mode. Employing a precise micromanipulator system, we controlled a micropipette to create a localized concentration gradient on the sensor surface and monitored the gradient through the PB nanofilm-sensitized PEM. The accuracy of the obtained concentration values was further validated by numerical simulations based on finite-element methods. Our technique ensures dependable localized detection, and we anticipate that advancements in film uniformity will further improve the resolution. The potential applications of this technique are broad and significant, including the opportunity to investigate single-cell exocytosis with neurotransmitters like dopamine, thus offering a promising avenue for future biomedical research. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|