Decentralized Emergency Control of AC Power Grid Modes with Distributed Generation

Autor: Alexander Fishov, Anatoly Osintsev, Anvari Ghulomzoda, Andrey Marchenko, Sergey Kokin, Murodbek Safaraliev, Stepan Dmitriev, Inga Zicmane
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Energies, Vol 16, Iss 15, p 5607 (2023)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en16155607
Popis: Large-scale development of small-scale generation, and facilities based on this, with their integration into existing distribution networks, qualitatively change the modes and tasks of network management and transform previously passive electric networks into active ones. Features of parameters and modes of small-scale generation, insufficient observability and manageability in centralized management determine the need to use a decentralized multi-agent control of the modes of such networks. First of all, this applies to emergency management, which includes automatic restoration of the integrity and normal operation of the network. This paper presents a set of specialized methods for emergency management of active power grid modes and the results of a study of their effectiveness on mathematical and physical models that confirm the feasibility of using decentralized emergency management and network recovery management. In particular, this includes: a method of emergency proactively balanced separation of grid energy districts along one of the a priori fixed network cross-sections in the event of disturbances with the transition to island mode, and a method for two-stage restoration of the integrity and normal network mode with decentralized synchronization of active parts on remote network switches. In the case of the decentralized remote synchronization of active parts, it is proposed to use special control of the excitation and speed of generators to create conditions for the successful operation of automatic reclosing devices with synchronization detection. It is essential for emergency management in active networks with small generation to reject the concept of ensuring the reliability of power supply through maintaining the integrity of the network in favor of the concept of an emergency-balanced breakdown of the network into balanced areas with the subsequent automatic restoration of integrity. To conduct research on the physical model, a prototype of distributed system emergency automation has been developed that does not use data transmission tools, which ensures its high cybersecurity and the feasibility of decentralized management.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje