Changes in Oxidised Phospholipids in Response to Oxidative Stress in Microtubule-Associated Protein Tau (MAPT) Mutant Dopamine Neurons

Autor: Xanthe Bradford, Hugo J. R. Fernandes, Stuart G. Snowden
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Antioxidants, Vol 13, Iss 5, p 508 (2024)
Druh dokumentu: article
ISSN: 13050508
2076-3921
DOI: 10.3390/antiox13050508
Popis: Microtubule-associated protein Tau (MAPT) is strongly associated with the development of neurodegenerative diseases. In addition to driving the formation of neurofibrillary tangles (NFT), mutations in the MAPT gene can also cause oxidative stress through hyperpolarisation of the mitochondria. This study explores the impact that MAPT mutation is having on phospholipid metabolism in iPSC-derived dopamine neurons, and to determine if these effects are exacerbated by mitochondrial and endoplasmic reticulum stress. Neurons that possessed a mutated copy of MAPT were shown to have significantly higher levels of oxo-phospholipids (Oxo-PL) than wild-type neurons. Oxidation of the hydrophobic fatty acid side chains changes the chemistry of the phospholipid leading to disruption of membrane function and potential cell lysis. In wild-type neurons, both mitochondrial and endoplasmic reticulum stress increased Oxo-PL abundance; however, in MAPT mutant neurons mitochondrial stress appeared to have a minimal effect. Endoplasmic reticulum stress, surprisingly, reduced the abundance of Oxo-PL in MAPT mutant dopamine neurons, and we postulate that this reduction could be modulated through hyperactivation of the unfolded protein response and X-box binding protein 1. Overall, the results of this study contribute to furthering our understanding of the regulation and impact of oxidative stress in Parkinson’s disease pathology.
Databáze: Directory of Open Access Journals