Autor: |
Xuecheng Wu, Houkui Zhou, Huimin Yu, Roland Hu, Guangqun Zhang, Junguo Hu, Tao He |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 19, p 7607 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22197607 |
Popis: |
An algorithm for a sharpness evaluation of microscopic images based on non-subsampled shearlet wave transform (NSST) and variance is proposed in the present study for the purpose of improving the noise immunity and accuracy of a microscope’s image autofocus. First, images are decomposed with the NSST algorithm; then, the decomposed sub-band images are subjected to variance to obtain the energy of the sub-band coefficients; and finally, the evaluation value is obtained from the ratio of the energy of the high- and low-frequency sub-band coefficients. The experimental results show that the proposed algorithm delivers better noise immunity performance than other methods reviewed by this study while maintaining high sensitivity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|