Autor: |
Ying-Tzu Chen, Ying-Xiang Luo, Shih-Hsuan Chan, Wen-Yi Chiu, Hung-Wei Yang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of Nanobiotechnology, Vol 21, Iss 1, Pp 1-16 (2023) |
Druh dokumentu: |
article |
ISSN: |
1477-3155 |
DOI: |
10.1186/s12951-023-02154-0 |
Popis: |
Abstract Triple-negative breast cancer (TNBC) represents a formidable challenge due to the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression, rendering it unresponsive to conventional hormonal and targeted therapies. This study introduces the development of mesoporous nanoreactors (NRs), specifically mPDA@CuO2 NRs, as acid-triggered agents capable of self-supplying H2O2 for chemodynamic therapy (CDT). To enhance therapeutic efficacy, these NRs were further modified with immune checkpoint antagonists, specifically anti-PD-L1 and anti-CD24 antibodies, resulting in the formation of dual antibody-aided mesoporous nanoreactors (dAbPD−L1/CD24-mPDA@CuO2 NRs). These NRs were designed to combine CDT and checkpoint blockade immunotherapy (CBIT) for precise targeting of 4T1 TNBC cells. Remarkably, dAbPD−L1/CD24-mPDA@CuO2 NRs exhibited tumor-targeted CDT triggered by H2O2 and successfully activated immune cells including T cells and macrophages. This integrated approach led to a remarkable inhibition of tumor growth by leveraging the collaborative effects of the therapies. The findings of this study introduce a novel and promising strategy for the integrative and collaborative treatment of refractory cancers, providing valuable insights into addressing the challenges posed by aggressive breast cancer, particularly TNBC. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|