Autor: |
Neha Attal, Emilio Marrero, Kyle J. Thompson, Iain H. McKillop |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Biology, Vol 11, Iss 11, p 1613 (2022) |
Druh dokumentu: |
article |
ISSN: |
2079-7737 |
DOI: |
10.3390/biology11111613 |
Popis: |
Fatty acid binding protein-4 (FABP4) is not normally expressed in the liver but is induced in alcohol-dependent liver disease (ALD)). This study sought to identify mechanisms whereby ethanol (EtOH) metabolism alters triglyceride accumulation and FABP4 production. Human hepatoma cells which were stably transfected to express alcohol dehydrogenase (ADH) or cytochrome P4502E1 (CYP2E1) were exposed to EtOH in the absence/presence of inhibitors of ADH (4-methylpyrazole) or CYP2E1 (chlormethiazole). Cells were analyzed for free fatty acid (FFA) content and FABP4 mRNA, then culture medium assayed for FABP4 levels. Cell lysates were analyzed for AMP-activated protein kinase-α (AMPKα), Acetyl-CoA carboxylase (ACC), sterol regulatory element binding protein-1c (SREBP-1c), and Lipin-1β activity and localization in the absence/presence of EtOH and pharmacological inhibitors. CYP2E1-EtOH metabolism led to increased FABP4 mRNA/protein expression and FFA accumulation. Analysis of signaling pathway activity revealed decreased AMPKα activation and increased nuclear-SREBP-1c localization following CYP2E1-EtOH metabolism. The role of AMPKα-SREBP-1c in regulating CYP2E1-EtOH-dependent FFA accumulation and increased FABP4 was confirmed using pharmacological inhibitors and over-expression of AMPKα. Inhibition of ACC or Lipin-1β failed to prevent FFA accumulation or changes in FABP4 mRNA expression or protein secretion. These data suggest that CYP2E1-EtOH metabolism inhibits AMPKα phosphorylation to stimulate FFA accumulation and FABP4 protein secretion via an SREBP-1c dependent mechanism. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|