SPEAKER-DEPENDENT FEATURES FOR SPONTANEOUS SPEECH RECOGNITION

Autor: I. P. Medennikov
Jazyk: English<br />Russian
Rok vydání: 2016
Předmět:
Zdroj: Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki, Vol 16, Iss 1, Pp 195-197 (2016)
Druh dokumentu: article
ISSN: 2226-1494
2500-0373
DOI: 10.17586/2226-1494-2016-16-1-195-197
Popis: This paper presents the results of the study on improving robustness to the acoustic variability of the speech signal for spontaneous speech recognition system. The method is proposed to constructing high-level bottleneck features using deep neural network adapted to a speaker and to acoustic environment with i-vectors. The proposed method provides 11,9% relative reduction of word error rate in Russian spontaneous telephone speech recognition task.
Databáze: Directory of Open Access Journals