Autor: |
Franco Leonardo Redondo, María Carolina Giaroli, Andrés Eduardo Ciolino, Mario Daniel Ninago |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Materials, Vol 8 (2022) |
Druh dokumentu: |
article |
ISSN: |
2296-8016 |
DOI: |
10.3389/fmats.2021.803054 |
Popis: |
For the first time, composite coatings based on poly(dimethylsiloxane-block-ε-caprolactone) copolymer and tricalcium phosphate were obtained on stainless steel plates by using the electrophoretic deposition technique. The effect of different deposition times on the final characteristics of the resulting coatings was also studied. Block copolymers were obtained through a combination of anionic and ring-opening polymerization, with good homogeneity and chemical composition (Ð < 1.3 and wPCL = 0.39). The composites obtained at different electrophoretic deposition times revealed a linear dependence between the deposited weight and time during assays. When immersing in simulated body fluid, a higher amount of residual solids ( ∼ 20 %) were observed by thermogravimetric analysis after 7 days of immersion. Scanning electron microscopy micrographs revealed a porous microstructure over the metallic substrate and the absence of micro-cracks, and X-ray diffraction patterns exhibited diffraction peaks associated with a hydroxyapatite layer. Finally, energy-dispersive X-ray analysis revealed values of the Ca/P ratio between 1.40 and 1.50 in samples, which are closer to the stoichiometric hydroxyapatite values reported in hard tissues. The results obtained in this article confirm the usefulness of poly(dimethylsiloxane-block-ε-caprolactone) copolymer and cheaper tricalcium phosphate as precursors of compact and homogenous coatings obtained by electrophoretic deposition, which yields useful substrates for hydroxyapatite growth. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|