Effects of Bio-Organic Fertilizer on Soil Infiltration, Water Distribution, and Leaching Loss under Muddy Water Irrigation Conditions

Autor: Youliang Peng, Liangjun Fei, Feilong Jie, Kun Hao, Lihua Liu, Fangyuan Shen, Qianwen Fan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Agronomy, Vol 13, Iss 8, p 2014 (2023)
Druh dokumentu: article
ISSN: 2073-4395
DOI: 10.3390/agronomy13082014
Popis: This study analyzes the soil water infiltration characteristics under muddy water irrigation and bio-organic fertilizer conditions in the current context of muddy water irrigation rarely being used in agricultural production and in combination with the problems of water resource shortages and low soil fertility in arid and semi-arid regions. An indoor one-dimensional soil column infiltration device was used for studying the effects of four muddy water sediment concentration levels (ρ0: 0; ρ1: 4%; ρ2: 8%; ρ3: 12%) and four bio-organic fertilizer levels (FO0: 0; FO1: 2250 kg·hm−2; FO2: 4500 kg·hm−2; sFO3: 6750 kg·hm−2) on soil water infiltration, evaporation characteristics, and leaching loss. The results demonstrated that a higher muddy water sediment concentration and fertilization level resulted in a smaller wetting front distance and cumulative infiltration amount within the same time, but the infiltration reduction rate (η) gradually increased. The three infiltration models (Kostiakov, Philip, and Horton) were fitted, and it was discovered that all three had good fitting results (R2 > 0.8), with the Kostiakov model displaying the best fit and the Horton model exhibiting the worst fit. The cumulative evaporation amount and evaporation time in muddy water irrigation and fertilization conditions was consistent with the Black and Rose evaporation models (R2 > 0.9), the Black model was proved to be higher than the Rose model. In comparison to ρ0, muddy water irrigation increased conductivity and total dissolved solids (TDS) in the leaching solution, but it reduced cumulative evaporation, soil moisture content, the uniformity coefficient of soil water distribution, and leaching solution volume. Compared with FO0, the application of bio-organic fertilizer increased soil water content and reduced soil water evaporation while also reducing the leaching solution volume, conductivity, and TDS in the leaching solution. The results of this research can provide scientific reference for the efficient utilization of muddy water irrigation and the rational application of bio-organic fertilizer.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje