Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell–specific manner

Autor: Alan Avalos, Jacob T. Tietsort, Nutthakarn Suwankitwat, Jonathan D. Woods, Shaun W. Jackson, Alexandra Christodoulou, Christopher Morrill, H. Denny Liggitt, Chengsong Zhu, Quan-Zhen Li, Kevin K. Bui, Heon Park, Brian M. Iritani
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: JCI Insight, Vol 7, Iss 9 (2022)
Druh dokumentu: article
ISSN: 2379-3708
DOI: 10.1172/jci.insight.153597
Popis: Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell–specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell–specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell–specific Hem-1–deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) — alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Databáze: Directory of Open Access Journals