Particle Entrapment in Line Elastohydrodynamic Contacts and the Influence of Intermolecular (van der Waals) Forces

Autor: George K. Nikas
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Lubricants, Vol 8, Iss 5, p 60 (2020)
Druh dokumentu: article
ISSN: 2075-4442
DOI: 10.3390/lubricants8050060
Popis: A metallic particle passing through concentrated rolling-sliding contacts is often linked to surface damage for particles larger than the available gap. At the instant of particle pinching, force balancing dictates particle entrapment and passing through the contact or rejection. It is vital to include all major forces in this process. This study revisits the analytical entrapment model previously published by the author for spherical micro-particles by incorporating a force so far overlooked in related studies, namely the van der Waals intermolecular force and, additionally, surface roughness effects. In conjunction with particle mechanical and fluid forces, this provides an almost complete set to use for correct force balancing. A parametric analysis shows the effect of several geometrical, mechanical, rheological, and surface parameters on spherical particle entrapment and reveals the significance of the van der Waals force for particles smaller than about 5–10 μm in diameter.
Databáze: Directory of Open Access Journals