Autor: |
Dr. Dominique Bruns, Dr. Daniel Merk, Dr. Karthiga Santhana Kumar, PD Dr. Martin Baumgartner, Prof. Dr. Gisbert Schneider |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
ChemistryOpen, Vol 8, Iss 10, Pp 1303-1308 (2019) |
Druh dokumentu: |
article |
ISSN: |
2191-1363 |
DOI: |
10.1002/open.201900222 |
Popis: |
Abstract Constructive machine learning aims to create examples from its learned domain which are likely to exhibit similar properties. Here, a recurrent neural network was trained with the chemical structures of known cell‐migration modulators. This machine learning model was used to generate new molecules that mimic the training compounds. Two top‐scoring designs were synthesized, and tested for functional activity in a phenotypic spheroid cell migration assay. These computationally generated small molecules significantly increased the migration of medulloblastoma cells. The results further corroborate the applicability of constructive machine learning to the de novo design of druglike molecules with desired properties. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|