Autor: |
Eric Soupene, Joseph Kao, Daniel H. Cheng, Derek Wang, Alexander L. Greninger, Giselle M. Knudsen, Joseph L. DeRisi, Frans A. Kuypers |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Journal of Lipid Research, Vol 57, Iss 2, Pp 288-298 (2016) |
Druh dokumentu: |
article |
ISSN: |
0022-2275 |
DOI: |
10.1194/jlr.M065003 |
Popis: |
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C14-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C14-CoA and can also bind the far more abundant palmitoyl-CoA (C16-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C18:2-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C16-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C16-CoA. These results indicate that ACBD6 can locally sequester C16-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C16-CoA. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|