Popis: |
This paper investigates the fixed-time tracking control problem for agile missiles with multiple heterogeneous actuators in the presence of saturation constraints and external disturbances. To reduce the turning radius and promote maneuvering envelope, a novel combination scheme for blended actuators is introduced in this paper, consisting of a flexible mechanism control system (FCS), reaction-jet control system (RCS), and aerodynamic control. Based on the proposed nonsingular terminal sliding mode surface, a fixed-time anti-saturation controller with an auxiliary system is presented first to ensure global fixed-time stability and to compensate for the adverse effects of input saturation. Subsequently, a fixed-time disturbance observer is constructed to estimate uncertainties and lumped disturbances, and to address the chattering problem. To assign the total virtual control command to different actuators, a control allocation based on dynamic programming considering actuator dynamics is established. Finally, detailed numerical simulations and comparisons are provided to verify the effectiveness and superiority of the proposed control scheme. |