Multisensor Fusion Estimation for Systems with Uncertain Measurements, Based on Reduced Dimension Hypercomplex Techniques
Autor: | Rosa M. Fernández-Alcalá, José D. Jiménez-López, Jesús Navarro-Moreno, Juan C. Ruiz-Molina |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematics, Vol 10, Iss 14, p 2495 (2022) |
Druh dokumentu: | article |
ISSN: | 10142495 2227-7390 |
DOI: | 10.3390/math10142495 |
Popis: | The prediction and smoothing fusion problems in multisensor systems with mixed uncertainties and correlated noises are addressed in the tessarine domain, under Tk-properness conditions. Bernoulli distributed random tessarine processes are introduced to describe one-step randomly delayed and missing measurements. Centralized and distributed fusion methods are applied in a Tk-proper setting, k=1,2, which considerably reduce the dimension of the processes involved. As a consequence, efficient centralized and distributed fusion prediction and smoothing algorithms are devised with a lower computational cost than that derived from a real formalism. The performance of these algorithms is analyzed by using numerical simulations where different uncertainty situations are considered: updated/delayed and missing measurements. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |