Popis: |
It is important to examine in detail how the distribution of academic research topics related to renewable energy is structured and which topics are likely to receive new attention in the future in order for scientists to contribute to the development of renewable energy. This study uses an advanced probabilistic topic modeling to statistically examine the temporal changes of renewable energy topics by using academic abstracts from 2010–2019 and explores the properties of the topics from the perspective of future signs such as weak signals. As a result, in strong signals, methods for optimally integrating renewable energy into the power grid are paid great attention. In weak signals, interest in large-capacity energy storage systems such as hydrogen, supercapacitors, and compressed air energy storage showed a high rate of increase. In not-strong-but-well-known signals, comprehensive topics have been included, such as renewable energy potential, barriers, and policies. The approach of this study is applicable not only to renewable energy but also to other subjects. |