Cartilage fragments combined with BMSCs-Derived exosomes can promote tendon-bone healing after ACL reconstruction

Autor: Chi Zhang, Chao Jiang, Jiale Jin, Pengfei Lei, Youzhi Cai, Yue Wang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Materials Today Bio, Vol 23, Iss , Pp 100819- (2023)
Druh dokumentu: article
ISSN: 2590-0064
DOI: 10.1016/j.mtbio.2023.100819
Popis: Anterior cruciate ligament reconstruction (ACLR) often fails due to the inability of tendon-bone integration to regenerate normal tissues and formation of fibrous scar tissues in the tendon-bone interface. Cartilage fragments and exosomes derived from bone mesenchymal stromal cells (BMSCs-Exos) can enhance enthesis healing. Nevertheless, the effects on the tendon-bone healing of ACLR remain unknown. This study found that BMSCs-Exos can promote the proliferation of chondrocytes in cartilage fragments, and activated the expression of chondro-related genes SOX9 and Aggrecan. The optimal effect concentration was 1012 events/uL. Besides, BMSCs-Exos could significantly upregulated the expression of BMP7 and Smad5 in cartilage fragments, and further enhanced the expression of chondrogenic genes. Moreover, this study established a rat model of ACLR and implanted the BMSCs-Exos/cartilage fragment complex into the femoral bone tunnel. Results demonstrated that the mean diameters of the femoral bone tunnels were significantly smaller in the BE-CF group than those in the CF group (p = 0.038) and control group (p = 0.007) at 8 weeks after surgery. Besides, more new bone formation was observed in the femoral tunnels in the BE-CF group, as demonstrated by a larger BV/TV ratio based on the reconstructed CT scans. Histological results also revealed the regeneration of tendon-bone structures, especially fibrocartilage. Thus, these findings provide a promising result that BMSCs-Exos/cartilage fragment complex can prevent the enlargement of bone tunnel and promote tendon-bone healing after ACLR, which may have resulted from the regulation of the BMP7/Smad5 signaling axis.
Databáze: Directory of Open Access Journals