On the Wiener Complexity and the Wiener Index of Fullerene Graphs

Autor: Andrey A. Dobrynin, Andrei Yu Vesnin
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Mathematics, Vol 7, Iss 11, p 1071 (2019)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math7111071
Popis: Fullerenes are molecules that can be presented in the form of cage-like polyhedra, consisting only of carbon atoms. Fullerene graphs are mathematical models of fullerene molecules. The transmission of a vertex v of a graph is a local graph invariant defined as the sum of distances from v to all the other vertices. The number of different vertex transmissions is called the Wiener complexity of a graph. Some calculation results on the Wiener complexity and the Wiener index of fullerene graphs of order n ≤ 232 and IPR fullerene graphs of order n ≤ 270 are presented. The structure of graphs with the maximal Wiener complexity or the maximal Wiener index is discussed, and formulas for the Wiener index of several families of graphs are obtained.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje