Solutions of the Multivariate Inverse Frobenius–Perron Problem
Autor: | Colin Fox, Li-Jen Hsiao, Jeong-Eun (Kate) Lee |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Entropy, Vol 23, Iss 7, p 838 (2021) |
Druh dokumentu: | article |
ISSN: | 23070838 1099-4300 |
DOI: | 10.3390/e23070838 |
Popis: | We address the inverse Frobenius–Perron problem: given a prescribed target distribution ρ, find a deterministic map M such that iterations of M tend to ρ in distribution. We show that all solutions may be written in terms of a factorization that combines the forward and inverse Rosenblatt transformations with a uniform map; that is, a map under which the uniform distribution on the d-dimensional hypercube is invariant. Indeed, every solution is equivalent to the choice of a uniform map. We motivate this factorization via one-dimensional examples, and then use the factorization to present solutions in one and two dimensions induced by a range of uniform maps. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |