Popis: |
Anterior temporal lobectomy (ATL) is commonly adopted to control medically intractable temporal lobe epilepsy (TLE). Depending on the side of resection, the degree to which Wallerian degeneration and adaptive plasticity occur after ATL has important implications for understanding cognitive and clinical outcome. We obtained diffusion tensor imaging from 24 TLE patients (12 left) before and after surgery, and 12 matched controls at comparable time intervals. Voxel-based analyses were performed on fractional anisotropy (FA) before and after surgery. Areas with postoperative FA increase were further investigated to distinguish between genuine plasticity and processes related to the degeneration of crossing fibers. Before surgery, both patient groups showed bilateral reduced FA in numerous tracts, but left TLE patients showed more extensive effects, including language tracts in the contralateral hemisphere (superior longitudinal fasciculus and uncinate). After surgery, FA decreased ipsilaterally in both ATL groups, affecting the fornix, uncinate, stria terminalis, and corpus callosum. FA increased ipsilaterally along the superior corona radiata in both left and right ATL groups, exceeding normal FA values. In these clusters, the mode of anisotropy increased as well, confirming fiber degeneration in an area with crossing fibers. In left ATL patients, pre-existing low FA values in right superior longitudinal and uncinate fasciculi normalized after surgery, while MO values did not change. Preoperative verbal fluency correlated with FA values in all areas that later increased FA in left TLE patients, but postoperative verbal fluency correlated only with FA of the right superior longitudinal fasciculus. Our results demonstrate that genuine reorganization occurs in non-dominant language tracts after dominant hemisphere resection, a process that may help implement the inter-hemispheric shift of language activation found in fMRI studies. The results indicate that left TLE patients, despite showing more initial white matter damage, have the potential for greater adaptive changes postoperatively than right TLE patients. |