Machine learning regression algorithms to predict short-term efficacy after anti-VEGF treatment in diabetic macular edema based on real-world data

Autor: Ruijie Shi, Xiangjie Leng, Yanxia Wu, Shiyin Zhu, Xingcan Cai, Xuejing Lu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-46021-2
Popis: Abstract The objective of this retrospective study was to predict short-term efficacy of anti-vascular endothelial growth factor (VEGF) treatment in diabetic macular edema (DME) using machine learning regression models. Real-world data from 279 DME patients who received anti-VEGF treatment at Ineye Hospital of Chengdu University of TCM between April 2017 and November 2022 were analyzed. Eight machine learning regression models were established to predict four clinical efficacy indicators. The accuracy of the models was evaluated using mean absolute error (MAE), mean square error (MSE) and coefficient of determination score (R 2). Multilayer perceptron had the highest R 2 and lowest MAE among all models. Regression tree and lasso regression had similar R 2, with lasso having lower MAE and MSE. Ridge regression, linear regression, support vector machines and polynomial regression had lower R 2 and higher MAE. Support vector machine had the lowest MSE, while polynomial regression had the highest MSE. Stochastic gradient descent had the lowest R 2 and high MAE and MSE. The results indicate that machine learning regression algorithms are valuable and effective in predicting short-term efficacy in DME patients through anti-VEGF treatment, and the lasso regression is the most effective ML algorithm for developing predictive regression models.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje