Autor: |
David Subires, Fernando J. Gómez-Ruiz, Antonia Ruiz-García, Daniel Alonso, Adolfo del Campo |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 4, Iss 2, p 023104 (2022) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.4.023104 |
Popis: |
The classical spin-vector Monte Carlo (SVMC) model is a reference benchmark for the performance of a quantum annealer. Yet, as a Monte Carlo method, SVMC is unsuited for an accurate description of the annealing dynamics in real-time. We introduce the spin-vector Langevin (SVL) model as an alternative benchmark in which the time evolution is described by Langevin dynamics. The SVL model is shown to provide a more stringent test than the SVMC model for the identification of quantum signatures in the performance of quantum annealing devices, as we illustrate by describing the Kibble-Zurek scaling associated with the dynamics of symmetry breaking in the transverse field Ising model, recently probed using D-Wave machines. Specifically, we show that D-Wave data are reproduced by the SVL model. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|