Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

Autor: Devin B. Holman, Shawn M. D. Bearson, Bradley L. Bearson, Brian W. Brunelle
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Gut Pathogens, Vol 10, Iss 1, Pp 1-12 (2018)
Druh dokumentu: article
ISSN: 1757-4749
DOI: 10.1186/s13099-018-0236-y
Popis: Abstract Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline and florfenicol are frequently administrated to food-producing animals to treat and prevent various diseases. Therefore, we evaluated the response of MDR S. Typhimurium after exposure to these two antibiotics. Results We exposed four MDR S. Typhimurium isolates to sub-inhibitory concentrations of chlortetracycline (16 and 32 µg/ml) or florfenicol (16 µg/ml) for 30 min during early-log phase. Differentially expressed genes following antibiotic treatment were identified using RNA-seq, and genes associated with attachment and those located within the Salmonella pathogenicity islands were significantly up-regulated following exposure to either antibiotic. The effect of antibiotic exposure on cellular invasion and motility was also assessed. Swimming and swarming motility were decreased due to antibiotic exposure. However, we observed chlortetracycline enhanced cellular invasion in two strains and florfenicol enhanced invasion in a third isolate. Conclusions Chlortetracycline and florfenicol exposure during early-log growth altered the expression of nearly half of the genes in the S. Typhimurium genome, including a large number of genes associated with virulence and pathogenesis; this transcriptional alteration was not due to the SOS response. The results suggest that exposure to either of these two antibiotics may lead to the expression of virulence genes that are typically only transcribed in vivo, as well as only during late-log or stationary phase in vitro.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje