Therapeutic effects of Huayu Jiedu formula on endometriosis via downregulating GATA 6 expression

Autor: Wen Cheng, Jing Shan, Jie Ding, Yiqun Liu, Shuai Sun, Lianwei Xu, Chaoqin Yu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 1, Pp e23149- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2023.e23149
Popis: Background: Endometriosis (EMs) is a common chronic inflammatory disease which is characterized by multiple clinical symptoms and high recurrence rate due to the absence of effective therapies. Huayu Jiedu Formula (HYJDF), is a traditional Chinese medicine prescription with five major herbs. It has been used as traditional medicine to treat EMs for more than twenty years and exerted a good therapeutic effect. However, the underlying mechanism is unclear. Here we aim to observe the effects of HYJDF on EMs and investigate the therapeutic mechanism. Methods: The extract components of HYJDF were identified and quantified by an UHPLC-QE-MS method. Network pharmacology was used to obtain the core targets of HYJDF for the treatment of EMs and the specific biologic processes involved. A total of 68 EMs cases were randomly divided into control (gestrinone) and observation (HYJDF) groups. The overall effectiveness, pain scores, cyst-size changes, serum CA125 levels, quality-of-life scores, safety, and adverse events were evaluated before and after treatment. For the mechanism research, DNA methylation-chip analysis was performed to determine the differential genes. EMs mice models and human ectopic stromal cells (ESCs) were treated with HYJDF and its pharmaceutical serum, respectively. The ectopic foci was measured via H&E staining while the expressions of the target genes were verified by real-time PCR and Western blot analysis. The inflammatory cytokine levels in the peritoneal fluid of mice were detected by ELISA. The proliferative potential of cells was analyzed by MTS whereas the apoptosis and cell cycle were determined through flow analysis. Results: The total number of components detected in positive and negative ion modes was 839 and 597, respectively. Network pharmacology suggested that HYJDF treated EMs through DNA methylation. We found that HYJDF and gestrinone exerted good therapeutic effect with no obvious difference, but the HYJDF treatment group had fewer side effects. GATA 6, which was hypomethylated and abundant in endometriotic cells, potently induced inflammatory response. This finding indicated the important role of GATA 6 in EMs development. Moreover, HYJDF ameliorated inflammatory response (i.e., reduced the levels of IL-1β and PGE2 in peritoneal fluid), suppressed ESCs proliferation, and increased cell apoptosis by down-regulating GATA 6 expression. Conclusion: We demonstrated that HYJDF has anti-inflammation activity and increased cell apoptosis through the reduction of GATA 6 expression in ectopic tissues, which showed good therapeutic effect without any obvious side effects. These findings suggest that HYJDF may be a new and efficient traditional Chinese medicine for the treatment of EMs.
Databáze: Directory of Open Access Journals