S-shaped connected component of positive solutions for second-order discrete Neumann boundary value problems

Autor: Miao Liangying, Liu Jing, He Zhiqian
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Open Mathematics, Vol 18, Iss 1, Pp 1658-1666 (2020)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2020-0098
Popis: By using the bifurcation method, we study the existence of an S-shaped connected component in the set of positive solutions for discrete second-order Neumann boundary value problem. By figuring the shape of unbounded connected component of positive solutions, we show that the Neumann boundary value problem has three positive solutions suggesting suitable conditions on the weight function and nonlinearity.
Databáze: Directory of Open Access Journals