Understanding the Role of Additives on The Electrochemistry and Performance of Zn Energy Storage Devices

Autor: Dr. L. N. Bengoa, Dr. R. M. González‐Gil, Prof. Dr. P. Gómez‐Romero
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: ChemElectroChem, Vol 11, Iss 6, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2196-0216
DOI: 10.1002/celc.202300517
Popis: Abstract As the interest in alternative Li‐based energy storage technologies increased during the last years, zinc emerged as a promising candidate. Despite several advantages over Li, Zn cycling stability is still a major issue. In this article, the use of near‐neutral electrolytes (non‐expensive 2 M ZnSO4) with the addition of different additives (dimethylsulfoxide and tetratethylammonium chloride) is proposed as a solution. The Zn deposition/dissolution electrochemistry has been evaluated and the cycling stability was determined in Zn//Zn symmetric coin‐cells. Hybrid supercapacitors were also assembled and tested in a range of 0.2 V–1.8 V for 2000 cycles, using activated carbon electrodes as cathode and Zn foil as anode. The results show that dimethylsulfoxide strongly inhibits the Zn deposition process, evidenced by a decrease in the cathodic current density, as well as in the dissolution peak. DMSO affects the deposition mechanism, whereas tetratethylammonium chloride reduces the exchange current density, consistent with the adsorption of tetraethylammonium ions on the Zn surface. A synergy between both additives leading to further inhibition of Zn2+ reduction is observed allowing cycling up to 250 hours for Zn//Zn devices. In addition, the performance of hybrid supercapacitors has also improved showing better capacity and extended cycle life.
Databáze: Directory of Open Access Journals